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Abstract 

For over 50 years the artificial intelligence community has represented problems to be solved as a 

combination of an initial state and goal state along with some background knowledge. In this 

paper, I challenge this representation because it does not adequately capture the nature of a 

problem. Instead, a problem is a state of the world that limits choice in terms of potential goals or 

available actions. To begin to capture this view of problems, a representation must include a 

characterization of the context that exists when a problem arises and an explanation that causally 

links the part of the context that contributes to the problem with the goal that constitutes a 

solution. The challenge to the AI community is to not only represent such features but to enable 

agents that can infer them autonomously. 

1.  Introduction 

The task of problem-solving was a central process examined during the genesis of the field of 

artificial intelligence (AI). Like humans, a machine should be capable of solving difficult 

problems if it were to be considered intelligent. To illustrate such behavior, programs such as the 

General Problem Solver (GPS) were given some initial starting state and a goal state and then 

they would output a sequence of actions that would achieve the goal (Newell & Simon, 1963). 

This sequence of actions (i.e., plan) was considered a solution to the problem. Problem-solving 

itself was cast as a search through the state-space implicit in its knowledge (in the case of GPS, 

inherent in its difference table) to find a combination of steps that meet the goal criteria (Amarel, 

1968; McCarthy & Hayes, 1969). 

 Over the years, many types of problems have been studied. Initially, researchers developed 

algorithms for various puzzles and games such as the Towers of Hanoi1 (e.g., Ernst, 1969; 

Knoblock, 1990), chess (e.g., Bilalić, McLeod, & Gobet, 2008; Chase & Simon, 1973; Hsu, 

2002), and the 8-puzzle and its derivations (e.g., Ratner, & Warmuth, 1986; Russell, & Norvig, 

2003). As research matured, research turned to design and planning tasks. For design problems, 

solutions are artifact design configurations that meet specific requirements (Chandrasekaran, 

1990; Maher, Balachandran, & Zhang, 1995); for planning, solutions are sequences of steps that 

achieve a goal (Ghallab, Nau, & Traverso, 2004). This paper will focus on planning problems to 

illustrate the argument in some depth. Further, we will attempt to dispel the notion that puzzles 

                                                 
1 At least 340 articles were published on the game in the 100 years from its invention in 1883-1983 

(Stockmeyer 2013), and apparently even ants can solve a isomorphic version of the problem (Reid, 
Sumpter, & Beekman, 2010). 
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are problems in the sense of the word whereby problems imply risk for an agent. Puzzles in 

isolation do not contain threat or risk or in any way limit the choices available to an agent as do 

problems. The defining attribute of a problem is the restriction of choice. 

 This paper has two major sections. The first section outlines the classical representation of a 

problem and then enumerates some problems with this construction. The second section proposes 

an alternative problem representation and then challenges the AI community to take serious the 

computational tasks of recognizing a problem in any state, explaining what causes it, and 

autonomously generating goals to remove these causes. 

2.  The Classical Problem Definition 

What is a problem? Answer: An initial state, the goal state, and the means to get from one to the 
other. 

2.1  Classical Problem Representation 

Over time, the representation of a problem has been formalized with a standard notation. Here we 

use the formalism from the automated planning community (e.g., Bonet & Geffner, 2001; and 

especially Ghallab, Nau, & Traverso, 2004), but variations across AI tend to be similar to the 

following representations. 

 
Formal Problem Definition: A problem consists of an initial state, goal expression, and a 
domain transition model. 

𝒫 =  (𝑠0, 𝑔, 𝛴) where 𝑠0 ∈ 𝑆, 𝑔 ∈ 𝐺 ⊂ 𝑆 
 

State Transition System: a set of possible states, a set of actions, and a successor function. 

𝛴 = (𝑆, 𝐴, 𝛾) 
 
Successor Function: returns the next state, given a current state and action. 

𝛾: 𝑆 ⨯ 𝐴 → 𝑆 
 
Problem Solution: a sequence of actions, i.e., a plan. 

𝜋: 2𝐴 = 𝛼1 | 𝜋[2 … 𝑛] = ⟨𝛼1, 𝛼2 … 𝛼𝑛⟩ 
 
Plan Execution: starting from the initial state (𝑠0), recursive action execution results in the goal 
state (𝑠𝑔) that entails the goal expression. 

𝛾(𝑠0, 𝜋) = 𝛾(𝛾(𝑠0, 𝛼1), 𝜋[2 … 𝑛]) → 𝑠𝑔⊨𝑔 

2.2  Problems with the Classical Representation 

The biggest problem with the classical representation is that problems in this form amount to 

arbitrary states to achieve, i.e., puzzles, not problems. The reason that the initial state is 

problematic and the goal state not is lacking in the representation. Instead the causal justification 
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remains in the head of the researcher; the machine has no access to it and thus must simply do 

what it is told.  

 Classical problems therefore tend to possess three negative attributes as follows. 
 The need for the goal or why it is a solution is opaque and cannot be explained; 
 The central issue with the initial state is implicit; 
 Problems must be provided by humans rather than inferred by an intelligent system or 

agent. 

 The representation for problems is often overly simplified in the literature. Consider the 

blocksworld planning domain (Gupta & Nau, 1992; Winograd, 1972). Initial states in this domain 

are random configurations of blocks, and so too are the goals. For example in the first panel of 

Figure 1, the initial state is the arrangement of three blocks on the table and the goal state is to 

have block A on top of block B. The planner blindly executes a plan to pick up A and stack it on 

B, but the planner has no reason why this goal state is valued, and if the world changes 

dramatically the agent can only adapt the plan to maintain the intent without cause.  

 

 

Figure 1. Blocksworld state sequences that distinguish justified problems from arbitrary problems (adapted 

from Cox, 2013). 

 In the second panel, we assume a larger context such as the construction of buildings. In this 

context, the planner wishes to have the triangle D on the block A to keep water out when it rains. 

Here D represents the roof of the house composed of A, B, and C. Water getting into a person’s 

living space is a problem; stacking random blocks is not. 

 In both cases, papers that have been conditionally accepted will be examined for compliance 

with conditions placed on their acceptance. Final papers must follow the content, format, and 

length restrictions that are specified in these instructions. 

3.  An Alternative Problem Definition 

What is a problem? Answer: A situation that limits choice in terms of potential goals or available 
actions. 
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Problems are not simply puzzles or arbitrary states to achieve. A problem is a situation relative to 

an agent (or agents) with some existing history of actions and decisions.2 We claim that a 

situation is a problem for an agent whenever a significant risk exists (either immediately or 

eventually) of a loss in ability to achieve its current or future goals or to select and execute 

particular actions.  

 Potential goals are those that might be possible to formulate in the future; kinetic goals are 

those currently in an agent’s agenda. Risks to either can pose problems. For example, the loss of 

home value due to neighborhood trends is a problem for a house’s owner. It limits the potential 

goal of having the house sold, even if the owner does not currently have the desire to do so. 

 
Formal Problem Definition: A problem consists of the currently observed and expected states, 
the background knowledge, an episodic history, a causal explanation of the problem and a goal 
that solves it. We examine these in turn. 

𝒫 = (𝑠𝑐 ,  𝑠𝑒 ,  𝐵𝑘, 𝐻𝑐 ,  𝜒, 𝑔′) where 𝑠c, s𝑒 ∈ 𝑆 

3.1  Representing the Intent Context 

The key to understanding problems is to recognize the importance of goals or the intended future 
directions of an agent. A new area of research called goal reasoning (or sometimes referred to as 
goal-driven autonomy) has attempted to develop agents with a capability to reason about their 
own goals, to change them when warranted, and to formulate new goals when confronted with 
new problems (Aha 2018;3 Cox 2007; 2013; Klenk, Molineaux & Aha, 2013; Munoz-Avila 
2018). To do so, problems must include a representation of the dynamic context of the agent with 
respect to its intent. 
 
Background Knowledge: the state transition system (see Classical Problem Representation) 
along with a set of goal operations.  

𝐵𝑘 = (𝛴,  ∆) 
 
 Here the action models within 𝛴 enable an agent to predict subsequent states (𝑠𝑒) and to use 
these expectations in comparison with observed states (𝑠𝑐) to suspect the presence of problems. 
See Dannenhauer & Munoz-Avila (2015; Dannenhauer, Munoz-Avila & Cox, 2016) for detail. 
 
Interpretation Function: given a state and a (possibly empty) goal, the interpretation function 
performs goal operations from ∆= { | ∶ 𝐺 𝐺} resulting in a desired goal (Cox, 2017; Cox, 
Dannenhauer, & Kondrakunta, 2017).  

𝛽: 𝑆 × 𝐺 → 𝐺 

 
 A specific operation from 𝛥 is represented as the 4-tuple  =  (ℎ𝑒𝑎𝑑(), 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(),
𝑝𝑟𝑒(), 𝑟𝑒𝑠(), where 𝑝𝑟𝑒() and 𝑟𝑒𝑠() are its preconditions and result. The transformation’s 
identifier is ℎ𝑒𝑎𝑑(), and its input goal argument is 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(). There are two essential goal 
operations. Goal formulation (𝛽(𝑠, ∅) → 𝑔) infers a new goal given some state (Cox, 2007; 2013; 

                                                 
2 The idea of an initial state is itself arbitrary, if one allows for agents that persist over extended time 

periods. 
3 Based on the Robert S. Engelmore Memorial Lecture given at IAAI-17. 
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Paisner, Maynord, Cox & Perlis, 2013); whereas, goal change (𝛽(𝑠, 𝑔) → 𝑔′) transforms an 
existing goal into another (Choi, 2011; Cox & Veloso, 1998; Cox & Dannenhauer, 2016).4 
 
Goal Trajectory: the original goal (𝑔1) and its evolution into current goal (𝑔𝑐). 

�⃑� = ⟨(𝑠0,  𝑔1), (𝑠𝑖, 𝛽(𝑠𝑖, 𝑔1)), … (𝑠𝑗, 𝑔𝑐)⟩ 

 
 Goals do not always remain as given or first formulated. They are malleable objects that 
change over time as agents change their intent. Goals go through arcs or trajectories in a goal 
hyperspace over time (see Bengfort & Cox, 2015; Eyorokon, Panjala, & Cox, 2017; Eyorokon, 
Yalamanchili, & Cox, 2018). 
 
Current Goal Agenda: the current goal being solved along with any pending goals remaining to 
be solved. 

𝐺𝑐 = {𝑔𝑥 , 𝑔𝑦, … 𝑔𝑐} 
 
Agenda History: the evolution of the agenda up to and including its current instance. 

𝐺ℎ = ⟨𝐺1, �̂�2, … 𝐺𝑐⟩ 

3.2  Representing the Problem-Solving Episode 

Finally, the problem representation requires a formalism for the problem-solving process and its 
unfolding solutions to a goal trajectory. The reason for this requirement is that new problems can 
arise during the act of solving a previous problem or during plan execution in the world. 
 
Plan: previously executed steps (including current step α𝒄) composed with all remaining steps 
(𝒓). 

𝜋: 2𝐴 =  ⟨⍺𝟏, ⍺𝟐, … ⍺𝒄⟩ ∘  𝒓 = 𝒄 ∘ 𝒓 
 
(Re)Planning Function: given a state, a goal, and a (possibly empty) plan, the planning function 
performs a (re)planning operation using 𝛴 (Cox 2017). 

𝜑: 𝑆 × 𝐺 × 2𝐴 → 2𝐴 
Traditional plan generation is of the following form. 

𝜑(𝑠0, 𝑔1, ∅) → 1 
 
Planning Trajectory: the sequence over time of changing plans paired with the goals they 
purport to solve from the first goal and plan (𝑔1,1) until and including the current goal (𝑔𝑐) 
where the remainder of the plan (𝑟) awaits execution. 

�⃑⃑� = ⟨(𝑔1, 𝜋1), (𝑔𝑖, 𝜑(𝑠𝑗, 𝑔𝑖, 𝜋1[𝑘 … 𝑛])) , … (𝑔𝑐 , 𝜋𝑟)⟩ 
 
Current Execution Episode: the sequence of states and executed actions that occurred before 
and not including the current state. 

                                                 
4 Goal formulation is implemented as the insertion transformation ∗(∅) = 𝑔; whereas, a goal change 

would be the identity transformation 𝐼(𝑔𝑖) = 𝑔𝑖 for all 𝑔𝑖 ∈ 𝐺 i.e., the tuple (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑔, {𝑡𝑟𝑢𝑒}, 𝑔). See 
Cox (2017) for further detail and Cox & Dannenhauer (2017) for a more expressive goal representation. 
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ԑ𝑐 = ⟨𝑠0, ⍺1, (𝑠0, 𝛼1), ⍺2, … 𝑠𝑐−1, ⍺𝑐⟩ 

 
Episodic History: the history includes the goal, agenda, plan, and execution trajectories. 

𝐻𝑐 = (�⃑�, 𝐺ℎ , ⃑⃑, ԑ𝑐) 

3.3  The AI Challenge: Inferring the Problem 

Finally, we have the constituents to fully specify a problem and the restriction of choice it 
represents for an agent. If an agent is building a physical structure to contain its possessions and 
to safely house itself, it will have a typical set of goals to complete and reasons for each. The goal 
to add the roof is causally connected to the need for guarding one’s possessions and for personal 
safety and comfort. However, these ancillary goals are not currently threatened at the current time 
given the possessions are safe elsewhere, it is not raining, and the agent does not currently live in 
the house. But if possessions are moved into the house and a proper roof is not in place, the 
possessions will lose value when it rains. Lost value signifies reduced benefit and therefore less 
choice. This explanation (or others like it relating the current state to what can occur in the future) 
supports the goal of having a roof placed on the structure. Such relationships become 
institutionalized in best practices and behavior (e.g., building codes or procedures), but they are 
crucial in relatively novel situations that represent new problems to an agent.  
 
Problem Explanation: an explanatory graph of vertices and edges causally linking the current 
state (𝑠𝑐) to the limitation of choice. 

𝜒 = (𝑉, 𝐸) 

 
 New research in goal reasoning has argued that an intelligent agent should not simply solve 
problems and achieve goals presented to it, rather it should be capable of (1) recognizing 
problems on their own; (2) explaining what caused them; and (3) generating an independent goal 
to solve the problem or remove the cause (Cox, 2013). Preliminary findings show some benefit to 
this approach, although it is quite difficult to automatically separate out “true” problems from 
minor anomalies or discrepancies encountered by an agent in a changing, complex environment 
(Kondrakunta et al., 2018; Gogineni, Kondrakunta, Molineaux, & Cox, 2018).5 
 This is the next big challenge for the AI community in my opinion. AI systems or intelligent 
agents, if they are to be genuinely autonomous with a significant measure of independence, 
should themselves infer 𝜒 and 𝑔′ (placing the latter in 𝐺𝑐). They should not simply generate  and 
then wait for a human to given them further direction (or worse, halt computation). By this 
challenge, a problem would be represented as the following reduced 4-tuple. Neither the goal nor 
the explanation would be given. 

𝒫 = (𝑠𝑐 , 𝑠𝑒 , 𝐵𝑘, 𝐻𝑐) 

 
 A solution to 𝒫 would thus be of the form (𝜒, 𝑔′,). If we prevail over time in this task, the 
effort will result in agents that have a flexible capacity for dealing with problems on their own 

                                                 
5 These publications also illustrate the approach with a much more complex explanation and further 

distinctions that size restrictions in this paper do not allow. The formal representation developed here is 
not as well described in the papers however. 
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and if necessary explaining to others the reasons for their choices using the kind of intelligence 
reserved until now by only humans.  

4.  Conclusion 

The planning community is beginning to open up to the view that planning agents are more than 
generators of sequences of action steps; they must consider online, dynamic, and uncertain 
environments where decisions, action execution, interaction with other agents, and replanning all 
combine (Ghallab, Nau, & Traverso, 2014; 2016).However, the representation of an actual 
problem remains much the same as it has for fifty years (e.g., Patra, Traverso, Ghallab, & Nau, 
2018). Goal reasoning and explainable AI (Aha, et al., 2017; Cox, 1994; 2011; Gunning, 2016; 
Lane, Core, van Lent, Solomon, & Gomboc, 2005) are two important new areas of research with 
growing interest that question the status quo and push the frontiers of what we think machines 
should be able to accomplish on their own.  
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